
A Network-Failure-Tolerant Message-Passing

System For Terascale Clusters

Richard L. Graham, Sung-Eun Choi, David J. Daniel,

Nehal N. Desai, Ronald G. Minnich, Craig E Rasmussen,

L. Dean Risinger and Mitchel W. Sukalski

Los Alamos National Laboratory∗

Advanced Computing Laboratory

MS-B287

Los Alamos, NM 87545 USA

lampi-support@lanl.gov

March 13, 2003

∗Los Alamos report LA-UR-02-892. Los Alamos National Laboratory is operated by

the University of California for the National Nuclear Security Administration of the United

States Department of Energy under contract W-7405-ENG-36. Project support was pro-

vided through ASCI/PSE and the Los Alamos Computer Science Institute.

1

Abstract

The Los Alamos Message Passing Interface (LA-MPI) is an end-

to-end network-failure-tolerant message-passing system designed for

terascale clusters. LA-MPI is a standard-compliant implementation

of MPI designed to tolerate network-related failures including I/O bus

errors, network card errors, and wire-transmission errors. This paper

details the distinguishing features of LA-MPI, including support for

concurrent use of multiple types of network interface, and reliable mes-

sage transmission utilizing multiple network paths and routes between

a given source and destination. In addition, performance measure-

ments on production-grade platforms are presented.

1 Introduction

High performance computing has traditionally been the domain of the super-

computer: expensive, special purpose, vector and/or parallel systems from

specialist computer companies (e.g., Cray YMP, Cray T3x, Meiko CS-2,

Thinking Machines CM5). The hardware and software developed by these

vendors had to be designed to meet strict performance and fault-tolerance

criteria demanded by their customers (a few large corporate or governmental

organizations).

Recently, supercomputer-level performance has become achievable using

large clusters of commodity-based systems (e.g., Beowulf clusters). While

promising excellent price–performance, these systems pose a new set of chal-

lenges to the system designer, namely:

2

• Obtaining the required performance by integrating disparate hardware

and software;

• Achieving acceptable levels of fault tolerance from commodity hard-

ware; and

• Cost- and time-effective management of very large systems.

With regard to fault tolerance, Saltzer et. al.[1] and Stone and Partridge[2]

have pointed out the need for addressing the end-to-end aspect of network

data transfer. Saltzer et. al.[1] cites as an example corrupt file transfers that

were the result of not having end-to-end data protection. This is often the

case for data transfers over network devices that are not integrated with the

cluster’s memory subsystems, such as networks that plug into the PCI bus. In

such systems, some components, such as the data transfer between network

interface cards (NIC), may have sufficient data protection. The transfers be-

tween system memory and NICs, however, are not protected, and so require

a high level protocol to provide end-to-end reliability. Stone and Partridge[2]

studied real TCP/IP internet data traces and showed a fairly high rate of

corrupt end-to-end data tranfers, errors that went undetected by the TCP

or UDP checksum. They argue that applications should provide end-to-end

data checks.

The situation is aggravated for large-scale applications in which very large

amounts of data are transferred in the course of a single application run. In

these scenarios TCP/IP performance is often inadequate, with O/S bypass

protocols being used to achieve acceptable levels of application performance.

3

We have observed application performance degradation as large as a factor of

two when comparing the performance using TCP/IP versus O/S bypass over

HIPPI-800, on an Origin2000 cluster. While using TCP/IP as a low level

data transfer protocol provides some level of end-to-end data protection, O/S

bypass protocols often leave this up to the application to provide this type

of data protection.

The Message Passing Interface (MPI) standard [3], the de facto standard

inter-process communication API for scientific applications, does not address

the issue of corrupt data delivery, dropped data, or mis-delivered data. It

assumes that data always arrives intact at the correct destination. Most cur-

rent implementations either ignore this problem altogether, or use TCP/IP,

at a significant performance cost, as the means to protect data transfers.

Others, however, have recognized the need to provide some sort of higher

level data integrity checks when using using O/S bypass protocols to im-

plement MPI. These include protocols such as GM from Myricom [4], and

Portals from Sandia National Laboratory [5].

In addition to the issue of corruption during data communication, other

sources of failure appear in terascale clusters. With the sheer number of com-

ponents that make up a terascale cluster, system component failure becomes

not only possible, but probable for an application which runs for a sufficient

amount of time. These include things such as processors, fans, interconnects,

switches, network interface cards, and more. In discussing such failures, we

use a three level taxonomy.

4

1. The lowest level deals with link level failures. These include data cor-

ruption and data loss, and in LA-MPI are addressed at a network device

specific level.

2. The middle level deals with transient and permanent network failures,

and is implemented in LA-MPI above the network device layer.

3. The upper level deals with more catastrophic failures, such as process

loss.

This classification is a little different than that used by Bosilca [6] to ana-

lyze ways of dealing with MPI fault tolerance. Bosilica’s taxonomy focuses

on which bit of software deals with failure, the low level messaging library,

cooperation of the library and the application, or the application.

LA-MPI is an implementation of MPI in which we address fault toler-

ance at all of these levels. LA-MPI implements version 1.2 of the standard,

and is integrated with ROMIO [7] for MPI-IO version 2 support. LA-MPI

(a) reliably delivers messages in the presence of I/O bus, network card and

wire-transmission errors; (b) survives network card and path failures (when

the operating system survives) and guarantees delivery of in-flight messages

after such a failure; (c) supports the concurrent use of multiple types of net-

work interface; and (d) implements message striping across multiple hetero-

geneous network interfaces, and striping of message fragments across multiple

homogeneous network interfaces.

There have been a number of research efforts attempting to incorporate

network and process fault tolerance into message passing systems. To date

5

most of this research has been done in the context of checkpoint/rollback

recovery systems. One of the first efforts to incorporate fault tolerance into

MPI was CoCheck tuMPI [8] from Technischen University Munich. CoCheck

used the Condor [9] library to checkpoint and then if necessary restart and

rollback the MPI job. This system’s main drawback was the need to check-

point the entire application, which could be prohibitively expensive in terms

of time and scalability for large applications (like those that would run on a

terascale cluster). Another effort, Starfish MPI [10], is similar in operation to

CoCheck, and also operates at an upper level. However, Starfish uses its own

systems to checkpoint jobs, and does not rely on a flush message protocol to

handle communications. Starfish uses “atomic” group communications pro-

tocols based on the Ensemble system [11]. A third upper level approach is the

FT-MPI [12] effort from the University of Tennessee-Knoxville. FT-MPI han-

dles fault tolerance at the MPI communicator level, and lets the application

developer decide what course of action they wish to take. The application

may decide to shrink, rebuild or abort the communicator depending on the

type of fault.

An assumption implicit in many of these systems is that the underlying

communication layer (this includes the reliability protocol built on top of

the media) delivers data error-free. Stone and Partridge among others have

shown that this assumption is not valid. The use of a reliability protocol like

TCP is no guarantee of end-to-end data integrity. LA-MPI’s novelty is based

on the end-to-end system design philosophy of Saltzer, Reed and Clark [1],

in which the only guarantee of reliability occurs when the end-points of the

6

communication have agreed on the validity of the data sent. At the same time

LA-MPI provides excellent performance. Only when end-to-end reliability is

assured can the more complex challenges of process check-pointing, rollback,

and recovery be addressed.

2 Architecture

The LA-MPI architecture is outlined in Figure 1. To simplify the discussion

we divide the design into three parts: the MPI interface layer, the Memory

and Message Layer (MML) and the Send and Receive Layer (SRL). The MPI

layer provides a thread-safe MPI 1.2 [3] compliant interface for compatibility

with existing applications. The MML provides policy-driven management of

physical and logical resources. The SRL performs the low-level data commu-

nication.

2.1 MPI Layer

As mentioned above, the MPI layer implements an MPI 1.2 compliant API,

the de facto message-passing standard for scientific applications. Although

LA-MPI is designed in a modular fashion, and the MPI layer could be re-

placed by alternative API wrapper layers, it should be emphasized that the

need to provide a complete and efficient MPI implementation led to specific

architectural design choices in the lower layers of LA-MPI. In part this is a

reflection of the complexity of the MPI standard.

It is worth noting that MPI promises applications the correct delivery of

7

data. To date, most MPI implementations assume that a lower-level protocol

or transport provides this guarantee. This is valid if the transport is, for

example, a TCP/IP driver, or shared memory. There are, however, many

examples of high-performance interconnects with OS bypass software support

where hardware-level reliability is not adequately handled. LA-MPI provides

an implementation of MPI which guarantees correct data delivery to the

application in such circumstances.

2.2 Memory and Message Layer

The Memory and Message Layer (MML) is composed of a memory manager,

a set of network paths, and a path scheduler.

The memory manager controls all memory (physical and virtual), in-

cluding the process private memory, shared memory, as well as “network

memory,” such as memory on the NIC. Memory is managed in several pools,

both process private and process shared, which are used for the allocation

of buffers of various types using a free-list allocation strategy to optimize

buffer reuse. Special attention is paid to memory locality issues on NUMA

(non-uniform memory architecture) multiprocessor systems: shared memory

pools are set up for each process so that a request can be made for memory

“close” to the process which will access it most.

A network path is a homogeneous transport abstraction used to encap-

sulate the properties of different network devices and protocols. A path

controls access to one or more network interface cards (NICs), Within a path

8

there may be several independent “routes” corresponding to physical NICs.

Currently implemented paths include UDP/IP (over any physical transport),

HIPPI-800 and Quadrics Elan3, with on-going development for Myrinet 2000.

Messaging between processes on the same host is handled by a special shared

memory “network” path which uses additional optimizations.

An example may clarify this concept. The Nirvana cluster at LANL is

a cluster of 16 SGI Origin 2000 128 processor systems, linked together with

4 independent HIPPI-800 switches, and gigabit ethernet. LA-MPI provides

three paths: shared memory, HIPPI-800, and UDP/IP over gigabit ethernet.

The HIPPI-800 path comprises the entire HIPPI-800 interconnect, using mul-

tiple (4) independent sub-paths or routes between a given pair of end-points.

The path scheduler “binds” a specific message between given source and

destination processes to a particular path, so that different messages between

the same end-points may use different paths. Though still under develop-

ment, the intention here is that the routing and scheduling algorithms can be

selected at compile time or run time, and may be a default or user-written

module. An algorithm might schedule messages across paths according to

message properties (e.g. size, destination, etc.), and/or use statistics-based

heuristics. Depending on message size and available routes, a single message

may be striped across several routes.

In the Nirvana cluster described above, whole messages may be scheduled

across different paths (HIPPI-800 and UDP/IP), while fragments of a single

message may be striped across up to four different routes.

The MML architecture implements several desirable features:

9

• Message striping across several network paths, thereby increasing net-

work utilization and performance, is straightforward. By message strip-

ing we mean, sending different messages between the same end points

via different network paths, such as an O/S bypass over HIPPI-800

path and a UDP/IP path.

• Message-fragment striping across several routes within a single net-

work path is possible when a path comprises more than one network

interface. E.g., a single message is fragmented and sent along multiple

network paths, such as over multiple HIPPI-800 nics and switches. At

the destination, this message is reassembled.

• Reliability is implemented within the path abstraction. The path is re-

sponsible for breaking an outgoing message into one or more fragments,

and reassembling incoming fragments into complete messages. During

fragmentation and reassembly, a path specific “checksum” function is

used to verify correct transmission. For HIPPI-800 we use a a 32 bit

data checksum, and in the UDP/IP implementation we rely on the net-

work checksum provided by this protocol and assume that any data we

receive is correct. The Send and Receive layer (SRL - see below) uses

the ”checksum” when deciding how to proceed. If data corruption is

detected the entire fragment is retransmitted. The detailed protocol

for this process is discussed in section 3.

• Resilience to network device failure is a function of the path scheduler.

In case of a network route failure, evidenced by many failed message

10

transmissions, the path scheduler will attempt to “rebind” outstanding

messages to another valid (and functional) route between the source

and destination processes. This route may use the same path or it may

be assigned to a different path. Future messages will not be bound

to the failed route. The ability to “fail-back” to the first route (cor-

responding to the case of a temporarily unavailable network device) is

also planned. This work in progress.

2.3 Send and Receive Layer

The Send and Receive Layer (SRL) is responsible for sending and receiving

message fragments, and is highly network dependent.

The physical path message fragments fall into two categories: those that

require the network (off-host) and those that do not (on-host). On-host

messages are simple copies through shared memory. Off-host messages are

handled by the Network Communication module, where the message frag-

ments are sent via physical resources associated with the path to which the

message is bound.

As mentioned above, the SRL layer also handles message fragmentation

and reassembly. Message reassembly occurs in the order in which the frag-

ments are received, and in systems with multiple routes between a pair of

end-points out-of-order fragment arrival is a common event, and is handled

correctly by this layer. This layer also handles the arrival of duplicate mes-

sage fragments which can occur with timer based data retransmission.

11

Finally, the SRL layer also handles the in-order delivery required by the

MPI standard. Data that arrives out-or-order is queued for later processing,

as is unexpected data.

Figure 2 illustrates the steps in a typical off-host point-to-point commu-

nication. For simplicity, assume the message consists of a single fragment.

When the user specifies a send, the MML determines the appropriate path

and fragments the message. The fragment is sent to the destination while

the source waits for an acknowledgment. For a multiple fragment message,

the fragments are sent in parallel as long as resources are available, and the

acknowledgments can be received in any order. If the fragment was not re-

ceived properly (determined either by a negative acknowledgment or time

out), the fragment is retransmitted. If the fragment was received properly,

the old fragment is freed. A more detailed description of the architecture is

available [13].

3 Reliability

3.1 Why include a reliability layer?

“Reliable” network protocols and devices are often designed to one set of

criteria, and deployed in environments that fail to respect these design as-

sumptions. For example, high-performance NICs are sometimes capable of

assuring reliable data transfer between NICs by doing reliable transport pro-

tocol (e.g. TCP) processing on the NIC itself. Unfortunately, this reliability

12

guarantee is negated if the NIC itself is plugged into an unreliable I/O bus.

Given the complexity of modern computers, the net result is that in large

cluster environments application to application reliability is often quite dif-

ficult to achieve, and its lack almost impossible to diagnose.

Why not use the nearly ubiquitous TCP transport protocol (executed on

the main CPUs)? The answer is, in a word, performance. TCP/IP-based

messaging has relatively high latency due to the maintenance of connec-

tion state that allows its heuristics to operate in environments from noisy

56Kbps dialup modems to gigabit ethernet LANs. High performance clus-

ter environments, however, are usually implemented with modern local and

system area networks that are capable of supporting very low latency in the

range of 3-30 microseconds from NIC to NIC. A well-performing message li-

brary must provide reliability over a range of network devices (e.g. Myrinet,

Quadrics, gigabit ethernet, etc.) using protocols with minimal impact on

latency (e.g. UDP/IP, VIA, etc.). In order to minimize latency in these en-

vironments, LA-MPI uses its own lightweight protocol to provide reliability

over a diverse set of network technologies.

The reliability layer in LA-MPI shares a number of attributes with other

reliability layers (most notably TCP) including the use of watchdog timers,

checksums, and sequence numbers to check for duplicate, lost, or corrupt

data [14, 15]. Unlike most TCP implementations, the LA-MPI reliability

layer is implemented in user space much like the reliability protocol in Globus-

Nexus [16]. Figure 2 shows the basics of the LA-MPI reliability protocol.

The protocol uses sender side retransmission to achieve the desired level of

13

reliability. Messages are fragmented into fixed-sized chunks, or “fragments”.

Each fragment is assigned a sequence number (out of a monotonically increas-

ing sequence of 64-bit values) and a timestamp, and the number of times a

given fragment has been sent is updated each time the fragment is sent.

Retransmission is scheduled on a per fragment basis using a truncated expo-

nential backoff scheme for every retransmission attempt; the backoff scheme

helps protect receiver resources in the event the receiver is busy executing

non-communication code.

Upon receiving the fragment, the receiving process sends either a positive

acknowledgment, ACK, or a negative acknowledgment, NACK, to the send-

ing process. ACKs can be of two types: fragment specific, and non-specific.

Fragment specific ACKs are generated when the receiving process has suc-

cessfully received a fragment, verified its ”checksum”, and copied its data

into application-specified memory. Non-specific ACKs are generated when a

duplicate fragment is received. They contain information about the largest

in-order sequence numbers seen from a sending peer for data that has been

received, and for data that has been successfully received and delivered to the

receiving application (i.e. copied out of the LA-MPI library). Non-specific

ACK information is piggybacked in each fragment specific ACK, and is used

by the sender to delay retransmission of fragments that have been received

but have not yet been acknowledged by a fragment-specific ACK or NACK.

NACKs are generated when the data received is corrupt (i.e. fails ”check-

sum” verification upon being copied to application memory). Upon receiving

a NACK, the sender will arrange to retransmit the data.

14

Figures 3 and 4 illustrate the overhead of providing end-to-end relia-

bility in LA-MPI. The overhead is small, and ranges between 2 to 15% for

x86 Linux and 2 to 3% for SGI Origin2000. In LA-MPI’s reliable UDP/IP

implementation, this low overhead is due to our reliance on UDP/IP’s check-

sum, and the relatively infrequent rate (every several seconds) at which we

check to see if a fragment needs to be retransmitted. On HIPPI-800 on the

Origin2000, the overhead of reliability is minimized by calculating checksums

concurrently with data copying.

4 Performance

In this section we present LA-MPI performance data on a simple ping-pong

benchmark and a representative scientific application, CICE (the Los Alamos

Sea Ice Model). For comparison, we also present data from other available

MPI implementations where this is available, notably Argonne National Lab-

oratory’s reference MPI implementation, MPICH version 1.2.3, and SGI’s

Message Passing Toolkit version 1.5.2 (MPT). We choose to compare our

results with MPICH because it is the most widely known implementation,

and many vendor implementations orginated from it. SGI’s implmentation

is used on the Origin because it is the vendor’s implementation, and is tuned

for it’s systems.

Performance was measured on Nirvana, LANL’s 16-machine cluster of

SGI Origin 2000 (O2K) machines (128 250 MHz R10K processors per ma-

chine) running IRIX 6.5, and representative commodity machines, namely

15

Dell Precision 610 PCs running RedHat Linux 7.1 and 7.2 (dual 550MHz

Pentium III processors for on-host testing and a single processor for off-

host testing). Off-host communication on Nirvana was accomplished over

the HIPPI-800 (100 MB/s peak performance) interconnect using user-level

operating system bypass support, and using UDP/IP over gigabit ether-

net (1 Gbps peak performance). Off-host communication on the Dells was

accomplished using UDP/IP over a 100 Mbps switched ethernet. On-host

communication in both environments uses anonymous shared memory.

While current performance can be characterized as good to excellent

(while providing services other MPI libraries do not), we expect these num-

bers and other performance metrics to improve as we continue optimizing

the library. A more comprehensive performance evaluation is under way.

4.1 Ping-Pong Latency and Bandwidth

Table I shows the zero-byte half-round-trip message latency for LA-MPI, SGI

MPT and MPICH from (Argonne National Lab) in micro-seconds.

As this table indicates LA-MPI has very good zero-byte latency. On the

Origin2000, the on-host latency of LA-MPI is 7.0 micro-seconds, 8% worse

than SGI’s MPT, but nearly three times better than MPICH. Over HIPPI-

800 LA-MPI’s latency is about 8% higher than SGI’s MPT. MPICH has no

implementation for this device. LA-MPI’s (UDP/IP) and MPT’s (TCP/IP)

latency over gigabit ethernet are virtually identical, while MPICH (TCP/IP)

has a latency that is about 11% higher.

16

On the Dell’s LA-MPI shared memory latency is 2.3 micro-seconds, an

order of magnitude better than MPICH, but over switched ethernet MPICH

is currently about 8% better than LA-MPI.

Figures 5 and 6 compare the bandwidth achieved by LA-MPI, MPT and

MPICH at various message sizes.

Comparing on-host (shared memory) bandwidths on the Origin 2000, at

small message sizes MPT performs better than LA-MPI, but by the time

one reaches larger messages size LA-MPI outperforms MPT. For example at

256 byte messages, MPT runs at 19 MB/s, and LA-MPI at 17 MB/s, at 8 KB

MPT gets about 101 MB/s and LA-MPI gets about 87 MB/s, but at 1 MB

MPT gets 135 MB/s, but LA-MPI runs at 145 MB/s. MPICH does not

perform as well as LA-MPI and SGI’s MPT, with bandwidth of 9.9 MB/s,

75 MB/s, and 80 MB/s, respectively.

Similar results are obtained for shared memory communications on the

Dell when we compare LA-MPI and MPICH, with LA-MPI showing signifi-

cantly better bandwidths than MPICH. At 256 bytes LA-MPI is running at

59 MB/s, at 8 KB bytes at 75 MB/s, peaking out at 64 KB message sizes

at a bandwidth of 169 MB/s, and at 512 KB the rate is 93 MB/s. MPICH’s

performance is 9.6 MB/s, 75 MB/s, 131 MB/s, and 86 MB/s, respectively.

For off-host communication, comparing LA-MPI and SGI’s MPT band-

widths, we see that for small messages the two are comparable, but for larger

messages LA-MPI has significantly better performance, since LA-MPI stripes

fragments of a single message across several HIPPI-800 routes (4 in this

case). At 256 bytes LA-MPI’s bandwidth is 1.5 MB/s, at 8 KB 18.8 MB/s,

17

at 128 KB 86 MB/s, and at 1 MB 135 MB/s. For SGI’s MPT the band-

widths are 1.4 MB/s, 20 MB/s, 57 MB/s, and 73 MB/s, respectively. The

relatively large differences (about 60%) already evident at 128 KBytes can

be understood, since the striping is done in chunks of 16 KB, and at the size

of 128 KB each HIPPI-800 route is already handling 2 message fragments.

Figure 7 illustrates the benefits of message-fragment striping, that is,

sending message fragments in parallel over different NICs. LA-MPI chops

HIPPI-800 messages into 16 KB fragments, and the benefit of striping is

obviously not evident until the message length is more than one fragment.

Low latency is achieved in a variety of ways. Shared memory latency is

low, because we use lockless queues in non-threaded operation, and mem-

ory management costs are minimized through the use of a simple free-list

strategy. For cross-host communication, the checksum cost is proportional

to the length of data transmitted, and therefore does not have a significant

impact on latency as seen in table I. Simultaneously, LA-MPI achieves high

bandwidth by fragmenting messages which allows the overlap of sender and

receiver memory copies. For shared memory, copying is also overlapped with

tag matching.

4.2 CICE: the Los Alamos Sea Ice Model

CICE [17] is a widely used production code for efficiently modeling sea ice in

a fully coupled atmosphere-ice-ocean-land global climate model. CICE is a

community model developed by scientists at LANL, the National Center for

18

Atmospheric Research (NCAR), and other universities.

CICE is also a good benchmark program for evaluating MPI implemen-

tations. It is written in Fortran 90 using a wide assortment of MPI features

including point-to-point communication (MPI ISEND/MPI IRECV), broad-

casts, reductions, MPI groups, and MPI datatype operations. In addition,

CICE uses a fairly even distribution of message sizes with slightly more very

small and very large messages (see Table II). This removes strong biases

toward particular message sizes when evaluating performance.

CICE is typically run on eight processors on the SGI Origin 2000 at

LANL. Figure 8 shows the performance of CICE for 64 and 128 time steps for

MPICH, SGI MPT, and LA-MPI. Performance with LA-MPI (99.18 seconds)

is within 3% of SGI MPT (96.47) for the 64 time step case, and within less

than 2% of SGI MPT for the 128 time step case (191.85 seconds and 188.78

respectively). MPICH ran 18% and 20% slower than LA-MPI, respectively.

The point-to-point communications times are also interesting to compare

with LA-MPI (8.02 seconds) taking 5% less time than SGI’s MPT (8.43

seconds) and 69% less time than MPICH (13.54 seconds) at the 64 time

step case. For the 128 time step case these differences are 27%, and 200%,

respectively, with LA-MPI taking 14.05 seconds, SGI’s MPT 17.82 seconds,

and MPICH 28.18 seconds.

19

5 Conclusions

In this paper, we have given a brief overview of LA-MPI, the Los Alamos Mes-

sage Passing Interface, a message-passing system for terascale clusters. Such

clusters will be composed of hundreds or thousands of individual commodity-

based machines connected by hundreds or thousands of network interfaces

over hundreds or thousands of cables. Each individual component of the

system not only adds capability but also points of failure.

LA-MPI was designed with the assumption that terascale clusters are

unreliable. In particular, the increasing functionality of hardware, especially

with respect to data integrity, does not eliminate the need for additional

software to ensure end-to-end reliability. LA-MPI’s novelty is that it provides

end-to-end reliability in a high performance message-passing system without

significant overhead on a wide variety of network transports and devices.

With the number of system failures expected to increase with cluster size,

applications must be prepared to deal with these failures. We have taken the

first steps in providing resilience for applications running on such clusters;

applications can continue through network failures as long as there is at least

one physical path between source and destination processors.

LA-MPI also offers the possibility to enhance performance relative to

existing message-passing systems by implementing message striping across

multiple heterogeneous network interfaces, and message-fragment striping

across multiple homogeneous network interfaces.

20

6 Future Work

LA-MPI is still in active development. We have recently made a port to Com-

paq’s Tru64 UNIX to add to our existing Linux and IRIX support. Quadrics’

Elan3 network interface is now supported under Tru64, and Myrinet 2000

network support under Linux is being implemented. Full automatic network

path failover is in development, and future performance optimization work

will address scalability issues.

In addition to these efforts, LA-MPI is part of a larger project aimed

at providing complete application resilience, or run-through. The Cluster

Research Lab in the Advanced Computing Laboratory at LANL has a num-

ber of projects that will together enable an application to run-through to

completion despite hardware failures. This is particularly important for ap-

plications at LANL and other DOE laboratories that run for weeks to months

before getting an “answer.” LA-MPI will ultimately be integrated with Su-

permon [18], a cluster monitoring system that will predict failures based

on vital hardware statistics such as CPU temperature and fan speeds. Ap-

plications running on processors or nodes that are predicted to fail will be

migrated off to a healthy node via the BProc migration facility [19]. LA-MPI

will be enhanced to support process migration.

21

Acknowledgments

The authors would like to thank former members of the LA-MPI team (then

called User-Level Messaging) including Pete Beckman, Steve Karmesin, Ling-

Ling Chen, MaryDell Nochumson (for her efforts in regression testing), and

members of the LANL BlueMountain support team. The authors would like

to thank Rob Aulwes for his cornucopia of useful suggestions.

References

[1] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end

arguments in system design. ACM Transactions on Computer Systems,

2(4):277–288, November 1984.

[2] Jonathan Stone and Craig Partridge. When the CRC and TCP check-

sum disagree. In SIGCOMM, pages 309–319, 2000.

[3] Jack J. Dongarra and David Walker. MPI: a standard message passing

interface. Supercomputer, 12(1):56–68, January 1996.

[4] http://www.myri.com/.

[5] http://www.cs.sandia.gov/cplant/.

[6] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djailali,

Gilles Fedak, Cecile Germain, Thomas Herault, Pierre Lemarinier, Oleg

Lodygensky, Frederic Magniette, Vincent Neri, and Anton Selikhov.

MPICH-V: Toward a Scalable Fault Tolerant MPI for Volatile Nodes.

22

[7] Rajeev Thakur, William Gropp, and Ewing Lusk. Users Guide

for ROMIO: A High-Performance, Portable MPI-IO Implementation.

Mathematics and Computer Science Division, Argonne National Labo-

ratory, October 1997. ANL/MCS-TM-234.

[8] Georg Stellner. CoCheck: Checkpointing and Process Migration for

MPI. In Proceedings of the 10th International Parallel Processing Sym-

posium (IPPS ’96), Honolulu, Hawaii, 1996.

[9] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle worksta-

tions. In 8th International Conference on Distributed Computing Sys-

tem, pages 108–111. IEEE Computer Society Press, 1988.

[10] A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic MPI pro-

grams on clusters of workstations. In 8th IEEE International Symposium

on High Performance Distributed Computing, 1999.

[11] Graham E. Fagg, Keith Moore, and Jack J. Dongarra. Scalable Net-

worked Information Processing Environment (SNIPE). Future Genera-

tion Computer Systems, 15(5–6):595–605, 1999.

[12] G. Fagg and a Dongarra. FT-MPI: Fault Tolerant MPI, Supporting

Dynamic Applications in a Dynamic World. In EuroPVM/ MPI User’s

Group Meeting 2000 ,Springer-Verilag, Berlin, Germany, 2000, 2000.

[13] Robbie T. Aulwes, David J. Daniel, Nehal N. Desai, Richard L. Graham,

L. Dean Risinger, and Mitchel W. Sukalski. LA-MPI: The Design and

23

Implementation of a Network-Fault-Tolerant MPI for Terascale Clus-

ters. In Submitted to 12th IEEE International Symposium on High Per-

formance Distributed Computing, 2003.

[14] J. Postel. Transmission Control Protocol. Internet Engineering Task

Force, RFC 793, 1981.

[15] W. R. Stevens. TCP/IP Illustrated, Volume 2; The Implementation.

Addison Wesley, Reading, 1995.

[16] A. Denis. Variable reliability protocol in Globus-Nexus. Technical re-

port, Information Science Institute (ISI), University of Southern Cali-

fornia, 1999.

[17] E. C. Hunke and W. H. Lipscomb. CICE: the Los Alamos sea ice model.

Technical Report LA-CC-98-16, Los Alamos National Laboratory, 1999.

[18] Ron Minnich and Karen Reid. Supermon: High performance monitoring

for linux clusters. In The Fifth Annual Linux Showcase and Conference,

November 2001.

[19] Erik A. Hendriks. BProc: The Beowulf distributed process space. In

16th Annual ACM International Conference on Supercomputing, 2002.

24

Platform (network) LA-MPI SGI MPT MPICH

O2K (shared mem) 7.0 6.5 19.9

O2K (Hippi800) 155.3 143.5 N/A

O2K (IP) 526.7 525.6 586.0

i686 (shared mem) 2.3 N/A 23.5

i686 (UDP/IP) 132.8 N/A 123.5

Table I: Zero-byte latency in micro-seconds for various message-passing li-

braries

message size in bytes number of messages

< 100 21786

101-1000 18410

1001-10001 18410

10001-100000 18410

> 100000 26090

Table II: Number of messages by size range in CICE for point-to-point com-

munication. The distribution of message sizes is fairly even with slightly

more very small and very large messages.

25

Memory and Message
Management

Shared
Memory

Network
Communication

Net
A

NetNet
B C

LAMPI

Memory
Subsystem

Application
User

MPI

SRL

MML

USER LEVEL
KERNEL LEVEL

OS Bypass

Device

Other Machines

Network
Drivers

Network Path Scheduler

Figure 1: LA-MPI architecture overview

26

fragment retransmission timeout exceeded?

message fragment ready to send on FragsToSend list

send message fragment with checksum/CRC

move fragment to FragsToAck list

move fragment to FragsToSend list if

 in−order received sequence number (LIRS)
or free fragment resources if

− fragment sequence number > peer largest

− fragment sequence number <= peer largest
 in−order delivered sequence number (LIDS)

and LIRS would:
a) prevent unnecessary
retransmission of this

if ACK with latest peer LIDS

fragment, or
b) allow the sender to free
fragment resources
then send non−specific ACK
with only LIRS and LIDS

ACK specific fragment
with data good or
corrupt status

record in received
SeqTrackingList

(is its sequence number already
recorded in the received

is the fragment a duplicate

SeqTrackingList)?

discard fragment

receive message fragment with
checksum/CRC

if data good:
− record in delivered
SeqTrackingList
else if data corrupt:
− erase from received
SeqTrackingList

copy (if needed) and
verify checksum/CRC

match fragment with
message receive
descriptor

receive acknowledgment (ACK): is it a
duplicate specific ACK?

discard ACK

check later...

Sender Receiver

1) store latest LIRS and LIDS (if latest
LIDS >= currently stored LIDS)

list and resources, if this is a fragment specific ACK
2) free fragment descriptor from FragsToSend/Ack

with good data status, or
3) move fragment to FragsToSend for retransmission,
if the ACK indicates the fragment was corrupted.

process acknowledgment (ACK):

yes

no

yes no

corrupt data

yes

no

Figure 2: Point-to-Point off-host communication for a single fragment mes-

sage. For a multiple fragment message, the fragments are sent in parallel as

long as resources are available, and the acknowledgments can be received in

any order.

27

0 4 16 64 256 1K 4K 16K

Message size (bytes)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

tim
e

(u
se

c)

Round-trip message latency for Dell x86 Linux

LA-MPI full reliability
LA-MPI no reliability

Figure 3: Comparison of full reliability LA-MPI to LA-MPI with reliability

turned off for the i686 Linux.

0 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

0

5000

10000

15000

20000

tim
e

(u
se

c)

Round-trip message latency for SGI Origin 2000

LA-MPI full reliability
LA-MPI no reliability

Figure 4: Comparison of full reliability LA-MPI to LA-MPI with reliability

turned off for the SGI Origin 2000.

28

0 4 16 64 256 1K 4K 16K 64K

Message size (bytes)

0

20

40

60

80

100

120

140

160

180

200
M

B
/s

ec
Round-trip throughput for Dell x86 Linux

LA-MPI SMP (on-host)
LA-MPI (off-host)
MPICH 1.2.3 SMP (on-host)
MPICH 1.2.3 (off-host)

Figure 5: Comparison of round-trip message throughput for Dell PC x86

Linux.

0 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

0

20

40

60

80

100

120

140

160

180

200

M
B

/s
ec

Round-trip throughput for SGI Origin 2000

LA-MPI SMP (on-host)
LA-MPI (off-host)
SGI MPT 1.5.2 (on-host)
SGI MPT 1.5.2 (off-host)
MPICH 1.2.3

Figure 6: Comparison of round-trip message throughput for the SGI Origin

2000.

29

0 4 16 64 256 1K 4K 16K 64K 256K 1M

Message size (bytes)

0

20

40

60

80

100

120

140

160

180

200
M

B
/s

ec
Round-trip throughput using multiple NICs

LA-MPI (4 NICs)
LA-MPI (3 NICs)
LA-MPI (2 NICs)
LA-MPI (1 NIC)
SGI MPT 1.5.2 (1 NIC)

Figure 7: Round-trip throughput with message striping.

nsteps=64 nsteps=128
0

100

200

300

400

500

tim
e

(s
ec

on
ds

)

Total runtime and communication time for CICE

MPICH
SGI MPT
LA-MPI

Figure 8: CICE run time using MPICH, SGI MPT, and LA-MPI for 64

and 128 time steps. The dark portion of the bars indicate time spent in

communication.

30

